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Abstract

This paper presents an efficient algorithm for solving a class of

quadratic integer programming problems. These problems include discrete

versions of the quadratic placement problem and the squared Euclidean

distance problem. The algorithm solves a finite sequence of minimum cut

problems, or equivalently maximum flow problems, on a graph with n + 2

vertices where n is the number of variables in the problem.

i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Consider an integer program of the form

minimize f(Y) a q 
~ ~k 

+ 
~ 

b y
j—1 k-l 1~1• (P0)

s.t. y
1 

— L~ , L~+l~ ..., u
1 

j • 1, 2, ..., n

where L~ and u
1 
are non—negative integers, q~~ — ~~j I ci~~ ~ 0 for i ~ k and

q k > 0 for j • 1, 2, .. ., n. We will develop an algorithm which solves (P0)

by solving a sequence of not more than ~~ (u1 
— minimum cut problems on a

1—1

graph with n+2 vertices.

Problems wh ich are of the form (P0 ) inc l u d e

discrete versions of the squared Euclidean distance location problem (White

• [6]) and the n—dimensional quadratic placement problem (Hall (1]). The dia—

crete squared Euclidean distance locgtion problem has the form

m m  
~ 

V
ik

[ ( Z
i

_ Z
k

) + (z
j
_z
k)
2
] + Z ~ 

w
ji

[z
j
_a
j)
2 

+ (z~_a~)
2
]

j l  k—l j—l k’l

s.t. z
1 

L~ , 2.~+l~ ..., u
1 

and z~ = 

~~~ 
L~+l~ ... , u~

where (z
1
, z~) is the location of new facility j, (ai, a1) is the location of

old facility i, and v
ik 

and are non—negative weights normally corresponding

to the number of trips between facilities. This problem decomposes into a

problem in z and a problem in z both of which are easily put into the form (P0).

The n—dimensional quadratic placement problem can be considered as a variant

of the squared Euclidean distance problem.

The underlying ideas f or the algorithm to be presented here are 

as1
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follows. We note from Picard and Ratliff [2] that a restricted version of

(P0) , where each y
1 

can take on only its lower bound L~ or its lower

bound plus one, can be eff iciently solved as a minimum cut problem on a graph.

(This will be illustrated later.) If Y* is the optimum solution to this re—

stricted problem, we will show that there exists an optimum solution Y° to

the original problem with y~ > y ~ 
for j—l, 2, ..., n. Hence for each j with

— L~+l we can increase the lower bound on by one. We can then repeat

this process until we obtain an optimum solution Y* with each y~ equal to its

lower bound. We will show that such a solution is optimum to the original

problem. Before formalizing the algorithm, we will develop the necessary

theoretical underpinning.

Theoretical Results

Consider the problem

minimize f(X) (P1)
s.t. x

1 
— 0, 1, 2, ..., u~ for j — 1, 2, ..., n

where f() is as defined for (P0) and u~ is a nonnegative integer for

j — 1, 2, ..., n. Also consider the related problem

minimize f(X)
(P2)

s.t. x
1 

= 0 or 1 for j = 1, 2, ... , n

where f(•) is as defined for (P0).

L e a  1: If X* is an optimum solution to (P2), then there is an optimum solu-

tion X’ to (P1) with x~ > x~ .

Proof of Lemma 1: Let X° be any optimum solution to (P1) and let R (jIx~ 
— 1

and x — O}. Define the vectors X’ and X” as

2
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Ii if j
— (

~ otherwise.

10 if j C R
X” —

• ~~ otherwise.

Noting that for each j~R the variables x~ = 1 and x~ = 0 we have

f(X*) — f(X”) = q k 
+2.~ ~ q k x~ + ~ b < 0 (Ri)

j € R keR jeR klR JER

since X” is feasible to (P2) and X* is optimum to (P2). Also noting that for

each j€R the variables x = 0 and x~ = 1 we have

~ ~~q~~~+2~~ ~~~~~~~~~ ~~b (R2)
j€R kER jE R kIR j€R

Now since < 0 and for ko~R we have x > x~ it follows that each term of

(1(2) is less than or equal to the corresponding term of (Ri). Hence,

f (X ’) < f(X°). Since X’ is feasible to (P1) and has x~ > x~ the result follows.

Q.E.D.

Lemma 2: If X* is an optimum solution to (P2) and x~ — 0 for j 1, 2, .. ., n,

• then X* is optimum to (P1).

Proof of Lemma 2: Assume that there exists an X° feasible to (P1) with

f(X°) < 0. (Note that f(X*) = 0.)

Define the vectors X’ and X” as

Ii if x0
x’ ”(
~ 10 if x0 0

x~ — x — x~ for i 1, 2, ..., n.

Then

f(X°) — f(X’ + X”) — q k~ 
)(x

k+~
c
k
) + ~ b (x’+x”)

3—1 k—i 1—1

— f(X’)+ f(X”)+2Z I q ~~~~X X
k

< O  (1(3)
j—l k—l

3
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Since X’ is feasible to (P2) and X* is optimum to (P2) with f(X*) 0, it

must be the case that f(X’) > 0.

Now consider the term 2 ~ q k x
’ x”. From the assumption that

j—l k—l 1 ~ I

q k 
> 0 we have ~ q k 

x’ > 0 if x’ — 1. In addition, whenever x’ — 0
k—l k—i 1 I I

• we have x” = 0. Hence, 2 ~ q k x
’ x~ > 0. Therefore, from (R3) it followsI j—l k—l 1

that f(X”) < 0.

If we repeat this process, each time setting X° — X”, after a finite num-

ber of repetitions we n~ust obtain an X” with f(X”) < 0 and x~ 0 or 1. This

contradicts the assumption that X* is optimum to (P2).

Q.E.D.

We need to make one further observation before stating an algorithm.

If a problem is in the form (P0), we can make the change of variables

— y
1 

— L~ to obtain

mm f(X)+L 
~ ~~q~~~x x ~~+ ~~x ( b  + 2 ~~~ L~q~~ )

3— i k—i j—1 k—l

+ ~ ~~q~~~ L L ~ (P3)
j—i k—i

s.t. x
1 

— 0, 1, ... , u
1
—L

1
.

Since the constant term does not affect the optimization, (P3) is of the same

form as (P1). Note that the only coefficients of (P3) which differ from (P0)

are those for the linear terms.

Algorithm

(1) Given a problem of the form (P0), transform it via the change of variables

x
1 

— y
1 

— L~ to the form (P1).

4
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(2) Solve the corresponding problem (P2) as a minimum cut problem on a graph

(e.g.,Picard and Ratliff [4]) to obtain the solution X*. Let

(3) If X — • stop. It follows from Lemma 2 and the transformation used to

obtain (P3) that X
1 

— L~ for J — 1, 2 , ... , n is optimum to (P0).

(4) If S # $ set — L~ + 1 for all I ~ S. It follows from Lemma 1 and

the transformation used to obtain (P3) that the new L~ is a valid lower

bound for y
1 
in (P0). For each I such that L~ — U

1 
permanently set

y
1 

— L~. Go to step (1).

Since at least one lower bound is increased by one at each iteration, the

algorithm terminates after at most ~ (u
1
—t
1
) iterations.

1_i

Example Problem

In order to demonstrate the steps of the algorithm, consider the following

example problem:

~ 
—

~~ ~~~~~~~ y1 
—6

minimize [y1, y2, y
3] I—~ 

8 _4J y
2 + [y1, y2, y3] —8 (P4)

—4 2~J 
y3 

—4

s.t. y1 — 0 , 
1, 2, 3 y2 — 0 , 1, 2 y3 — 0 , 1, 2, 3, 4

Note that this problem is already in the form (P1), so no initial change of

variables is required.

• In order to solve the corresponding problem (P2) we can define an undirected

graph with vertices, 0, 1, 2, ..., n+l and capacities defined as follows

(Picard and Ratliff [5]).

5
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C — —I’
ii “ii

— max{~~ ~~ + b1, 0)

c
0 

max{_ Zq~~~
_ b  .0]

I k—i 1

If (S, ~
) is a minimum capacity cut in the graph separating node 0 and node n+l

withO€ S and n+l e ~~~, an optimum solution to (P2) is x
1 

— 1 for j € S and

x
1 

0 for 3 € S.

For this example the graph is as shown in Figure 1 where the dashed lined

indicates a minimum cut. The optimum solution to (P2) is x
1 

— 1, x2 
— 1, and

x3 — 0. From step 4 of the algorithm we set £~ — l~ — 1, £3 — 0.

Performing the change of variables (P3) on (P0) with the new lower bounds

yields the new linear term coefficients [—2, 0, _16]
T
• The constant term is

ignored and the remaining coefficients are the same as in (P4). The new graph

and minimum cut are shown in Figure 2. An optimum solution to the new problem

(P2) is x1 — 1, x2 — 1, and x3 — 1. From step 4 we get £
1 

— 2, £2 
— 2, and

&
3
=l.

Again performing the change of variables (P3) on (P0) with the new lower

Tbounds yields the new linear term coefficients (—2, 0, 12] . The new graph

and minimum cut are shown in Figure 3. This time the optimum solution to (P2)

is x1 — 0, x2 — 0, and x3 — 0. Hence, an optimum solution to (P0) is y1 
Li 

= 2,

y2 L2 2’ a~~~y3 — L 3 — 1 .

6
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Figure 1: Graph for example iteration one.

mm cut
/

Figure 2: Graph for example iteration two .

min cut 
1

Figure 3: Graph for example iteration three.
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Constrained Problems

Constraints of the form y
1 

— 

~k 
— d

ik for dik integer can be incorporated

into (P0) very simply by using a device developed in Hammer , Rosenberg, and

Rudeanu [2], and discussed in Hammer and Rudeanu [3, p. 123]. For each con-

straint of this form we add to f(y) in (P0) the term (StS +1) (y
J
_ y~ _ d

J~
)
2

where S~ and S are the sums of the positive and negative coefficients of f (y) ,

respectively. If the optimum solution to the new problem is feasible to the

constraints, it is optimum to the original problem . If the optimum solution

to the new problem is not feasible to the constraints, then there does not exist

a feasible solution to the original problem. Note that (s+ — S + 1) is posi-

tive, hence adding terms of the form (S
+ 

— s + l
~~
y
3 

— 

~k 
— d

jk)
2 

to f(y)

yields a function with the same form as the original f(y).

By including constraints of this form in the squared Euclidean location

• problem , we are able to specif y the distance between pairs of facilities. This

device can be used to model the location of line segments (rectangles for the

two dimensional problem) by considering each end of the segment as a point to

be located and then constraining the distance between these points to be the

length of the segment. This is of particular interest In modeling layout

• problems .

Conclusions and Extensions

The algorithm presented here can be considered as a generalizatior of the

algorithm in Picard and Rat l i ff  [5] for the rectilinear distance loc&ttion pro-

blem. The basic difference is that additional special structure in the recti—

linear problem (i.e., each cut problem solved partitions the variables into

two sets and each set can be solved as an independent problem) allows a more

efficient algorithm which requires at most , in— i, where in is the number of old

• facilities, minimum cut problems on a graph with n+2 vertices.

8
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There are several possible generalizations for the procedure. First, the

form (P0) applies to a somewhat more general problem than the squared Euclidean

distance location problem and hence, may have other applications in a location
-
• .

. context. Second, Lemma 1 requires only that q
13 

< 0 for I 
~ 
j. In addition,

the lemma extends directly to an analogous result related to the upper bounds.

- Therefore, even if the assumption ~ q~~ > 0 is not satisfied, the result may
- 

. k—i

be used to increase the variable lower bounds and decrease the variable upper

bounds. Finally, problem (P1) where q13 = 0 for 3 — 1, 2, ..., n and q
13 

< 0

for I ~4 J can be solved as a single cut problem on an expanded graph. One can

simply replace each variable x by x 
k with x k — 0 or 1. The resulting- 

k—l

problem is of the form (P2) and can therefore be solved as a single minimum cut

- problem on a graph with ~ u~ + 2 nodes.- 
3—1

I
9
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